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We present various continuum limits to describe epitaxial thin film growth. We
consider a hierarchy of models which can take into account the diffusion of
terrace adatoms, attachment and detachment of edge adatoms, vapor phase dif-
fusion and the effect of multiple species. The starting point is the Burton–
Cabrera–Frank type step flow model. We have obtained partial differential
equations in the form of a coupled system of diffusion equation for the adatom
density and a Hamilton–Jacobi equation for the film height function. This is
supplemented with appropriate boundary conditions at the continuum level to
describe the growth at the peaks and valleys on the film. The results here can be
used in a macroscopic description of thin film growth.

KEY WORDS: Epitaxial growth; Burton–Cabrera–Frank (BCF) step flow
model; continuum limit.

1. INTRODUCTION

The purpose of the present paper is to derive continuum limits of step flow
models used in the study of crystal growth. We are mainly interested in the
regime where the growth is epitaxial, i.e., layer by layer growth of a crys-
talline thin film on a suitably chosen substrate. The atomic and lattice
structures play important role in these growth processes. This is in contrast
with the Mullins–Sekerka type of models which are typically applicable to
amorphous solids or growth from the liquid phase. (12, 14, 15, 17) The simplest
example of interest is found in molecular beam epitaxy (MBE) (25) in which
adatoms are delivered under ultra-high vacuum conditions onto the surface
where they diffuse until they are incorporated at a step or other surface
defects. Other more complicated growth methods such as chemical vapor



deposition (CVD) can also achieve the kind of epitaxial growth described
by the step flow models studied in this paper.

The foundation for the theory of crystal growth was laid out in the
paper of Burton, Cabrera and Frank (BCF). (2) It is also the starting point
of the present work. Recognizing that the vapor-solid interface consists of
three different kinds of geometric objects—terraces, steps and kinks of
dimensions two, one and zero respectively—BCF postulates that atoms in
the vapor phase land on the terraces and then diffuse until they meet a step
along which they continue to diffuse until they are finally incorporated into
the kink sites along the steps (Fig. 1). The diffusing atoms on the interface
are called adatoms. The original BCF theory concentrates on diffusion on
the terraces. The paper of Caflisch et al. (4) extends this theory to the full
terrace-step-kink hierarchy. Modern account of the theory of crystal
growth can be found in refs. 6 and 18.

At the atomic scale, the growth of a crystal should be described by the
hopping of adatoms between different lattice sites on the interface. The
kinetic monte carlo (KMC) or solid on solid (SOS) models operate at this
level. (22) BCF type of theory operates at the next level where the terraces are
treated as a continuum and the crystal grows as a result of the steps
moving in the horizontal direction. Our principal objective is to develop a
theory that operates at an even larger scale at which the interface is
described by a continuous height function and is seen to consist of moun-
tain peaks and valleys. In principle, we can go to an even larger scale over
which many peaks and valleys are homogenized. But we will not do so in
this paper.

Fig. 1. A two dimensional crystal surface can be described by the Terrace–Step(Ledge)–
Kink model.
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There is an abundance of continuum equations in the literature
describing epitaxial growth. (7, 10, 26, 27) Most of these equations take the form
of a fourth order partial differential equations for the thin film height
function. Our work is different in two aspects. Firstly, we strive to derive
these equations rigorously from step flow models instead of posing them on
phenomenological grounds. Secondly and more importantly, the equations
we obtain form a coupled system for both the height function and the
adatom densities. This is crucial if surface chemistry is going to be incor-
porated in the growth models.

This paper is organized as follows. In the next section, we present the
BCF step flow model and its generalizations. In Section 3, we derive two
continuum limits for vicinal surfaces. In Section 4, we discuss boundary
conditions at mountain peaks and valleys. These three sections are the core
of the present paper. Then we extend our model to 2+1 dimensions
(Section 5) and also incorporate vapor phase diffusion (Section 6). The
appendix includes some technical derivations and extensions.

2. BCF THEORY OF DIFFUSION AND ITS GENERALIZATIONS

2.1. BCF Theory

We will concentrate on the case of a single step. Extension to multiple
steps is obvious. The description below is for 2+1 dimensions.

Denote by W− (t) and W+(t) the upper and lower terraces separated by
a step C(t) (Fig. 2). Let r be the number density of adatoms on the terrace.
Then r satisfies the following standard diffusion equation on the terraces
W− (t) and W+(t):

rt=Dgr−
r

y
+F (1)

where F is the deposition flux; D is the diffusion constant on the terrace;
y is the evaporation time which is the average time that an adatom resides
on the terrace without being incorporated at the steps. Denote also by v
and n the velocity and normal vector of the step C(t) pointing to the lower
terrace.

To obtain the boundary conditions for (1) at C(t), consider the
following:

d
dt

F
W−(t)
r dA=F

W−(t)
rt dA+F

C(t)
r(v ·n) ds

=F
C(t)

1D “r
“n

+rv ·n2 ds+F
W−(t)

1F−
r

y
2 dA (2)
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The first term on the right hand side of (2) represents the flux of adatoms
from the upper terrace to the step C(t) as a result of diffusion and step
motion. Similarly, we have

d
dt

F
W+(t)
r dA=−F

C(t)

1D “r
“n

+rv ·n2 ds+F
W+(t)

1F−
r

y
2 dA (3)

Now we need constitutive relations for these fluxes. It is natural to
postulate the following type of linear kinetic relation:

J+=−1D “r
“n

+rv ·n2:
+
=a+(r−re) (4)

J−=1D
“r

“n
+rv ·n2:

−
=a− (r−re) (5)

where re is the equilibrium adatom density at the step. Among other
things, re may depend on the temperature as well as the geometric charac-
teristic of the step C(t) such as the curvature. The numbers a+ and a− are
the hopping rates of adatoms to the step from the lower and upper terraces.

In the original paper of BCF, the adatom density at the step is
assumed to be at its equilibrium value:

r ±=re. (6)

An additional boundary condition comes as a consequence of the
conservation of adatoms. Noting that adatoms on the steps are eventually

Fig. 2. Each step on the surface is treated as a one-dimensional continuum object in order
to compute the boundary condition for the adatom diffusion equation on the terrace.
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incorporated into the crystal (the details of this process is neglected in the
original BCF model), we thus have

1
a2
v ·n=J++J− (7)

where a is the lattice constant of the crystal and hence 1
a2

denotes the atom
density.

The system of equations (1), (4), (5) and (7) (or (1), (6) and (7))
completely determines the evolution of the steps.

2.2. Generalized BCF Theory

The generalization of the BCF theory considered here takes into
account in more detail the incorporation process at the steps. In order to
do this, we examine the dynamics of the edge adatoms. These are the
adatoms residing on the edge (step). They differ from the terrace adatoms
by having at least one more neighboring atom. Hence the edge adatoms are
much less mobile than the terrace adatoms. One can also think of the steps
as being a one-dimensional potential well along which the edge adatoms
diffuse.

Denote by j the edge adatom number density (with unit length −1).
The constitutive relations for J+ and J− are now changed to

J+=−1D “r
“n

+rv ·n2:
+
=a+r−b+j (8)

J−=1D
“r

“n
+rv ·n2:

−
=a−r−b−j (9)

where b+ and b− are the hopping rates of edge adatoms back to the lower
and upper terraces.

The dynamical equation for j is specified by the conservation of
adatoms

Dj
Dt

=J++J− −
1
a2

v (10)

where D
Dt refers to the material derivative as the steps are actually moving.

(Its precise form will be given when we write down the continuum limit
(35).)
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A constitutive relation has to be given to v. Again it is natural to pos-
tulate a linear relation:

v=a2k(cj−d) (11)

where k is the kink density. At each kink site, cj is the flux of edge
adatoms into the kinks and d is the flux of attached adatoms out of the
kinks. (Such a form for the step velocity has also been used in ref. 4, Sec-
tions II.13 and III.4).
Compared with the BCF model described in Section 2.1, the present

model ((1), (8)–(11)) takes into account the dynamics of both the terrace
and edge adatoms. For this reason, we call this the TE-Model and the
original BCF theory the T-Model. In this spirit, the system of equations in
ref. 4 which considers furthermore the dynamics of kinks should be called
the TEK-Model.

2.3. Relation Between the T and TE-Models

In this section, we show that the T-Model can in fact be recovered
from the TE-Model if the dynamics of j reaches its kinetic equilibrium. This
seems to show that the essential difference between the models lies on the
relative rates of the different processes.
By setting

djj
dt=J

+
j +J

−
j −

vj

a2
=0, i.e., a+r

+
j +a−r

−
j −(b++b− ) jj=

kcjj−kd, we obtain the following equilibrium value for jj:

jj=
a+r

+
j +a−r

−
j +kd

b++b−+kc
(12)

Now the fluxes in the TE-Model become:

J+j =a+r
+
j −b+1

a+r
+
j +a−r

−
j+kd

b++b−+kc
2

=1 b−+kc
b++b−+kc

2 a+r+j −1
b+

b++b−+kc
2 a−r−j −1

b+kd
b++b−+kc

2 (13)

J−j=a−r
−
j −b−1

a+r
+
j +a−r

−
j+kd

b++b−+kc
2

=1 b++kc
b++b−+kc

2 a−r−j −1
b−

b++b−+kc
2 a+r+j −1

b−kd
b++b−+kc

2 (14)
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If we consider the following regime for the parameters:

b± ° kc, r ±j ’
b± d

a± c
(15)

then the fluxes are further simplified to

J+
j =a+(r

+
j −r+e ) where r+e =

b+d

a+c
(16)

J −
j =a− (r

−
j −r −e ) where r −e =

b− d

a− c
(17)

so that (a variant of) the T-Model is recovered.
The scaling in (15) means that the dynamical processes between the

edge adatoms and the kinks are much faster than the detachment of the
edge adatoms back to the terraces. The quantities r ±e can be regarded as
the equilibrium terrace adatom densities. By imposing a+b−=a−b+ or
b± d° a± c, we arrive at r+e =r

−
e or r+e =r

−
e =0.

Similar type of reasoning can also be carried out to link the TEK-
Model introduced in ref. 4 to our TE-Model.

2.4. Other Models

In this section, we mention some other physical models that are often
used to describe epitaxial growth.

Adatom Permeability or Leakage Model. One of the main features of
our TE-Model (and also the TEK-Model in ref. 4) is that it allows the pos-
sibility of longer range diffusion for the terrace adatoms as they can hop
across the step to upper or lower terraces. There are some other approaches
which can also achieve similar effects. All of these models allow certain
leakage or permeability of the terrace adatoms from one terrace to another
(see refs. 5 and 24). Mathematically, the fluxes are formulated as:

J+
j =a+r

+
j −b+r

−
j

J −
j =a−r

−
j −b−r

+
j .

We anticipate that they will lead to a similar type of system to our TE-
Model.

Continuum Theory of Epitaxial Crystal Growth. I 227



Step Interaction Models. The interactions between the steps can come
from either entropic or elastic considerations. To incorporate these effects,
the fluxes are modeled as:

J+
j =a+(r

+
j −mj)

J −
j =a− (r

−
j −mj).

Here mj is the chemical potential of a step which in general depends on the
neighboring step configurations. For example, in refs. 9 and 16, mj is taken
to be:

mj=K 1 1
l3j
−

1
l3j−1
2 .

It would also be interesting to consider the continuum limits of these types
of models.

With the above introduction, we now proceed to derive the continuum
limits for the T- and TE-Models. We will first concentrate on the 1+1
dimensions. Higher dimensional formulations will be mentioned at the end.

3. CONTINUUM LIMITS OF VICINAL SURFACE (1+1 DIMENSION)

Vicinal terraces are those that are bounded by one up- and one down-
step (Fig. 3). Top(bottom) terraces are bounded by two down-steps(up-
steps) and are the local maxima(minima) of the step profile. In the present
work, we are interested in length scales larger than the typical terrace width
but smaller than the typical distance between the peaks and valleys on the
surface. In taking the continuum limit, the step profiles are replaced by a
continuous height function h(x, t).

Fig. 3. In the one-dimensional setting, a typical surface structure consists of top, vicinal and
bottom terraces.
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We first consider vicinal surfaces where h(x, t) is monotonically
decreasing or increasing. The consideration of peaks and valleys at the
continuum level will be given in the next section.

3.1. T-Model Without Evaporation

Consider a sequence of vicinal steps located at {xj(t)}
.

j=−. at time t
such that the step profile is monotonically decreasing (Fig. 4). We want to
find a function h(x, t) so that h(xj(t), t)−h(xj+1(t), t) % a, where a is a
small parameter denoting the lattice size or step height. We assume that the
horizontal scale is such that the typical terrace width l=xj+1−xj is of
order a. Our goal is to obtain an equation (continuum limit) for h as aQ 0.

The Peclet number Pe=va
D, defined as the ratio between the step velo-

city and the hopping velocity of the terrace adatom is typically very small.
This suggests that we can make the quasi-static approximation in which the
adatom density on the terrace adjusts instantaneously to the step motions.
In addition, we can also neglect the Stefan term v ·n in the boundary con-
ditions (4) and (5). If we further assume that re=0, then the BCF equa-
tions (1), (4), (5) and (7) (without evaporation) simply become

Simplified BCF

(T−Model)
˛Drxx=−F, x ¥ (xj(t), xj+1(t))

Drx |
+
j =a+r

+
j , −Drx |

−
j =a−r

−
j x=xj(t) ±

vj=a+r
+
j +a−r

−
j =[Drx]j=Drx |

+
j −Drx |

−
j

(18)

The above system of equations can be solved explicitly. Let lj(t)=
xj+1(t)−xj(t) be the terrace width. Then

r+j =
Flj(D+1

2 a− lj)
(a++a− ) D+a+a− lj

, r −j =
Flj−1(D+1

2 a+lj−1)
(a++a− ) D+a+a− lj−1

(19)

Fig. 4. r denotes the adatom density on a terrace. J+
j and J −

j refers to the fluxes of terrace
adatoms to the upper and lower steps. The xj’s refers to the (horizontal) locations of the steps.
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Observe that

a+r
+
j +a−r

−
j+1=Flj. (20)

Using (19), the velocity of each step is given by

1
a2

vj=a+r
+
j +a−r

−
j =

Flj(a+D+1
2 a+a− lj)

(a++a− ) D+a+a− lj
+

Flj−1(a−D+1
2 a+a− lj−1)

(a++a− ) D+a+a− lj−1
(21)

To obtain the continuum limit, we let aQ 0 and set D=O(a) a± . In
this way, we have a

lj
% |hx | (xj, t) and vj=

Fa3

|hx| (xj, t)
. Since v=

ht
|hx|

, we arrive at
the following

Continuum limit of T-Model for vicinal surface:

ht=Fa3. (22)

The above equation states that the height of the film increases uni-
formly across the interface. This is not surprising since the the T-Model
simply describes the process that adatoms flow irreversibly to the nearest
step. Therefore (22) is the obvious consequence of (20) which states that
adatoms on the terraces are incorporated either at the nearest upper or
lower steps. In particular, there is no possibility for the adatoms to diffuse
across a step. In this case, it is natural to consider the next order effects as
is done in the literature. This will be illustrated in the next section.

3.2. Modified Equation for T-Model

Here we consider a more general velocity law than (21):

1
a2

vj=f(lj)+g(lj−1) (23)

where f and g are the fluxes of adatoms from the lower and upper terraces
to the jth step. Usually f and g are increasing functions of the terrace
length l. By considering the following second order Taylor expansion for l,
we have:

lj=
a
|hx |

+
a2hxx
2|hx |3

, lj−1=
a
|hx |

−
a2hxx
2|hx |3

.
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Then the modified equation for h is given by:

ht=v |hx |=1f 1
a
|hx |

+
a2hxx
2|hx |3
2+g 1 a

|hx |
−
a2hxx
2|hx |3
22 a2 |hx |

=1f 1 a
|hx |
2+g 1 a

|hx |
22 a2 |hx |+1fŒ 1

a
|hx |
2−gŒ 1 a

|hx |
22 a4hxx

2 |hx |2
(24)

If we substitute formula (21) for f and g, the above equation becomes

ht=Fa3+1F(a+−a− ) āD2

2(āD |hx |+pa)2
2 a4hxx. (25)

By introducing the quantity h̃=h−Fa3t which describes the evolution of
the film in a moving frame, we arrive at the following equation:

h̃t=1
F(a+−a− ) āD2

2(āD |h̃x |+pa)2
2 a4h̃xx. (26)

Similar computations have also been done in ref. 11.
Note that Eq. (26) is a forward heat equation if a+ > a− . It reflects the

fact that the one dimensional T-Model in the step flow regime is a stable
evolution.

3.3. TE-Model Without Evaporation

As in the T-Model, we still work in the regime when Pe° 1. Then (1),
(8)–(11) (without evaporation) is simplified to

Generalized BCF

(TE−Model)
˛

Drxx=−F

Drx |
+
j =a+r

+
j −b+jj=J+

j

−Drx |
−
j =a−r

−
j −b−jj=J −

j

djj
dt

=j̇j=J+
j +J −

j −
vj
a2

vj=a2k(cjj−d)

(27)
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In this case, r can be solved in terms of j which act as boundary values for
the diffusion equation (1). The solution is given by:

r+j =
Flj(D+1

2 a− lj)
āD+plj

+1 (D+a− lj)b+
āD+plj
2 jj+1

Db−
āD+plj
2 jj+1 (28)

r −j =
Flj−1(D+1

2 a+lj−1)
āD+plj−1

+1 Db+
āD+plj−1
2 jj−1+1

(D+a+lj−1)b−
āD+plj−1

2 jj (29)

J+
j =
a+Flj(D+1

2 a− lj)
āD+plj

+1 DQ
āD+plj
2 jj+1

Da+b−
āD+plj
2 (jj+1−jj) (30)

J −
j =
a−Flj−1(D+1

2 a+lj−1)
āD+plj−1

−1 DQ
āD+plj−1
2 jj−1−1

Da+b−
āD+plj−1
2 (jj−jj−1)

(31)

where we have used the notation ā=a++a− , p=a+a− and Q=a+b− −
a−b+. Hence

djj
dt

=j̇j=J+
j +J −

j −
v
a2

=
a+Flj(D+1

2 a− lj)
āD+plj

+
a−Flj−1(D+1

2 a+lj−1)
āD+plj−1

+D 1a+b−+a−b+
2
21jj+1−jj
āD+plj

−
jj−jj−1
āD+plj−1
2

+D 1a+b− −a−b+
2
21jj+1+jj
āD+plj

−
jj+jj−1
āD+plj−1
2

−
v
a2

(32)

The above formulas are exact given the approximations made in (27).
It is then quite easy to extract from (32) the following leading order con-
tinuum equations for j and h.

Continuum limit of TE-Model for vicinal surface:

Dj
Dt

=
aF
|hx |

+a“h(A(|hx |) “hj)±2 1a+b− −a−b+
a+b−+a−b−

2 “h(A(|hx |) j)−
v
a2

(33)

v=a2k(cj−d), ht=v |hx |=a2k(cj−d) |hx | (34)
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where

Dj
Dt

=
dj(x(t), t)

dt
=
“j

“t
±v
“j

“x
(35)

A(|hx |)=1
a+b−+a−b+

2
2 aD |hx |
(a++a− ) D |hx |+a+a− a

(36)

“h=
1
|hx |
“x, ±=− sgn(hx) (37)

The sign convention for v is that it points to the lower terrace.
In writing down the above equations, we have considered the follow-

ing scaling for the parameters:

a= lattice height 0 0 (38)

l=O(a)=
a
|hx |

(39)

j=O(1) (40)

h, hx=O(1) (41)

a+, a−=a=O(1) (42)

b+, b−=b=O(1) (43)

D=O(a) a (44)

F=O(a) bj (45)

Q=a+b− −a−b+=O(a) ab (46)

The above lead to the following:

(a++a− ) D+a+a−=O(a) a2

A(|hx |)=O(a) b

Dj
Dt

=O(a2b) j.

Even though not all terms in (33) are of the same order, we keep the
leading order behavior of each of the following effects: deposition, diffusion,
convection and incorporations.

Equations (33) and (34) constitute the coupled system we announced
at the beginning. They show the fact that edge adatoms are able to diffuse
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across the terraces. This diffusion is hence much more global than just the
terrace diffusion considered in the original BCF theory. This is described
by the second term of the right hand side of (33). The third term is a drift
due to the Schwoebel barrier (to be explained below). The fourth term is the
loss to the growing interface.

It is instructive to rewrite (33) as

|hx |
a

Dj
Dt

+
1
a3
“h
“t
=F+“x(jÃ(hx) “xm) (47)

where

m=kT 1 ln j+2 sgn(hx)1
a+b− −a−b+
a+b−+a−b+

2 h
a
2 , (48)

Ã(hx)=
1
kT

A(hx)
|hx |

=
1

2kT
a(a+b−+a−b+) D

(a++a− ) D |hx |+a+a− a
. (49)

Here k and T are respectively the Boltzmann constant and temperature.
Clearly m should be interpreted as the chemical potential. The first term in m
is the usual entropic factor. The second term resembles the standard gravi-
tational potential. It is caused by the Schwoebel barrier. In general, such
barrier refers to the asymmetry of the hopping processes between upper
and lower terraces at the step edges, i.e., either a+ ] a− or b+ ] b− or
both. Usually, a+ > a− and b+ > b− . Physically, it represents an additio-
nal step-edge barrier that have to be overcome by the adatoms to diffuse
across the step edges. In the present setting, the effect of this step-edge
barrier is described by the coefficient

a+b− −a−b+
a+b−+a−b+

. The number Ã(hx) repre-
sents the effective diffusion coefficient. Its form shows that the presense of
steps slows down diffusion. (Note that Ã(hx)Q 0 as |hx |Q..) This slowing
down is not caused by the Schwoebel barrier but rather by the inhomoge-
neous environment created by the steps.

Remark 1. In the present formulation of the continuum limit (33)
and (34), we use j and h as the unknown variables. The terrace adatom
density r is eliminated. However, we can also use r and h as the variables.
To do this, we define r̄j=

1
2 (r

+
j +r

−
j+1). Then at the continuum level, r̄ and

j are proportional to each other:

r̄=
2b+b−

a+b−+a−b+
j. (50)
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Hence, j can be eliminated and the continuum equations become

Dr̄
Dt

=
2b+b−

a+b−+a−b+

aF
|hx |

+a“h(A(|hx |) “hr̄)±2 1a+b− −a−b+
a+b−+a−b−

2 “h(A(|hx |) r̄)

−
2b+b−

a+b−+a−b+

v
a2

(51)

v=a2k 1c a+b−+a−b+
2b+b−

r̄−d2 L(52)

Remark 2. The relationship between the T- and TE-Models can also
be established at the continuum level in a similar way as in Section 2.3. By
(33), the kinetic equilibrium condition for j implies:

k(cj−d)−a“h(A(|hx |) “hj)−2 1a+b− −a−b+
a+b−+a−b−

2 “h(A(|hx |) j)=
aF
|hx |

Thus j solves an elliptic problem which in term determines the step velocity
by (11). Under the same scaling regime for b± as in (15), it can be shown
that the second and third terms of the left hand side are much smaller than
the first term as a0 0. So we still have

v=a2k(cj−d)=
a3F
|hx |

which is the same as the T-Model. L

4. BOUNDARY CONDITIONS AT VALLEYS AND PEAKS

Our discussion so far is restricted to vicinal surfaces. The equations
apply to growth via step flows. We next consider the conditions at moun-
tain peaks and valleys which are generally present in island growth (Fig. 5).
Our approach is to supplement the continuum equations by appropriate
boundary conditions at these points. As the locations of the mountain
peaks and valleys might be time dependent, the whole evolution then
becomes a free boundary problem. While a complete set of conditions at
the valleys can be obtained through geometric and conservation considera-
tions, conditions at the peaks are associated with an entirely new physical
process, namely nucleation. We anticipate that additional constitutive rela-
tions have to be imposed at the peaks in order to fully describe the nuclea-
tion phenomena. One can draw an analogy between the valleys/peaks and
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Fig. 5. A continuum description of a typical surface structure treats the peaks and valleys as
free boundary points located at x(t)’s.

shocks/rarefaction waves in hydrodynamics. Only that in the present case,
the relevant flux is f(u)=|u| so that the rarefaction waves can also be dis-
continuous.

4.1. Continuum Limit in Eulerian Coordinates

In order to write down the boundary conditions, it is convenient to
reformulate the continuum equation (33) in terms of the Eulerian coordi-
nates. We first define the edge adatom density per unit length as F=|hx | j.
Then (33) becomes

“F

“t
− (Fv)x=aF+“x(J+) −

1
a2 ht, for hx > 0 (53)

“F

“t
+(Fv)x=aF+“x(J− ) −

1
a2 ht, for hx < 0 (54)

where

J+=aÃ(hx) “x
F

|hx |
− 2 1a+b− − a− b+

a+b− +a− b+

2 Ã(hx) F (55)

J− =aÃ(hx) “x
F

|hx |
+2 1a+b− − a− b+

a+b− +a− b+

2 Ã(hx) F (56)

(Recall the sign convention that v is pointing to the lower terrace.)
In the following, we will use X(t) to denote the location of the valleys

or peaks. At each valley, we have3 hx(X(t) −) < 0 and hx(X(t)+) > 0 while

3 We use the convention that subscript ± refers the regions with positive or negative slope
while superscript ± refers to right or left limit of a function.

at the peak hx(X(t) −) > 0 and hx(X(t)+) < 0 (Figure 5).
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4.2. Boundary Conditions at Valleys

As mentioned before, valleys are like shocks–the characteristic curves
intersect. This means that the steps are coming together from both sides of
the valley and are annihilated.

In the present setting, we have the usual Rankine–Hugoniot condition
corresponding to the conservation of adatoms:

[F]Ẋ(t)=−(J+(X+(t))−J− (X −(t)))−(Fv)(X(t)+)−(Fv)(X(t) −)
(57)

Since the height function is continuous, we obtain the following geo-
metric condition by differentiating the relationship h(X+(t), t)=h(X −(t), t)
in time and using the fact that ht(X ±)=v |hx | (X ±):

Ẋ(t)=−
|hxv(X+)|− |hxv(X −)|
|hx(X+)|+|hx(X −)|

(58)

In essence, this is the Rankine–Hugoniot condition for the equation
(hx)t=(v |hx |)x.

In addition, because of the presence of diffusion flux in (53) and (54),
it is natural to impose the continuity of the chemical potential [m]=0 at the
valley. This leads to

[j]=5 F
|hx |
6=0 (59)

This set of boundary conditions (57), (58) and (59) completely specifies
the evolution of the film at the valley.

4.3. Boundary Conditions at Peaks

As the peaks evolve like rarefaction waves—the steps on both sides are
moving away from each other, we anticipate the need for extra boundary
condition(s) to determine the growth of h in the space between the separat-
ing steps. The conservation and geometric conditions (57) and (58) for the
valley are still valid at the peak (with some sign changes):

[F]Ẋ(t)=−(J+(X+(t))−J− (X −(t)))+(Fv)(X(t)+)+(Fv)(X(t) −)
(60)

Ẋ(t)=
|hxv(X+)|− |hxv(X −)|
|hx(X+)|+|hx(X −)|

(61)
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However, we do not expect the continuity of j to be valid at the peak due
to the possibility of nucleations. So we are lacking two more boundary
conditions—one for the horizontal velocity Ẋ(t) and one for the vertical
velocity V of the peak. At this level of the continuum limit, we can specify
arbitrary values for these velocities. It is probable that we need to look into
the nucleation process in order to relate the values of Ẋ(t) and V to more
microscopic physical parameters.

Remark. The need for two more boundary conditions can also be
understood in the following way.

Given h (or hx(X+) and hx(X −)) at a certain time, Ẋ(t) needs to be
prescribed to solve the F diffusion equations (53) and (54) with the two
boundary conditions (60) and (61). This will then determine F(X+) and
F(X −) and hence v(X+) and v(X −). The next step is to solve ht=v |hx |
with rarefaction wave initial data, for example −|x|. In order to have
unique solution, we need further to specify the vertical growth rate V in
addition to the horizontal peak velocity Ẋ(t). L

5. CONTINUUM LIMITS IN 2+1 DIMENSIONS

In this section, we describe the continuum limits in 2+1 dimensions
for the TE-Model. (The T-Model remains unchanged.) As before, we con-
sider a family of vicinal steps. Now each step is a one dimensional curve
which can be parametrized by its arclength s. The differences with the 1+1
dimensional case are that now jj is a function of s and t and the edge
adatoms can also diffuse along the edge with some diffusion constant De.
So the dynamical equation (10) for jj is changed to

djj
dt

=De“
2
sjj+J+

j +J −
j −

1
a2

vj (62)

In passing to the continuum limit, we must note the difference between
the independent variables s and n. s is the coordinate along a step which is
a level set of the height function h and n is the coordinate normal to the
step. s is the slow variable which acts as a parameter whereas n is the fast
variable over which homogenization takes place. With this in mind, we can
easily write down the continuum equations in a form similar to (47):

|Nh|
a
1Dj
Dt

+jov2+1
a3
“h
“t
=F+N · (jM(|Nh|) Nm) (63)
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where
D
Dt

=
“

“t
+vn̂ ·N;

n̂=−
Nh
|Nh|

N=(“s, “n)=1
N +h
|Nh|

·N, −
Nh
|Nh|

·N2

N=(“x, “y), N +=(−“y, “x),

M(|Nh|)=1
De 0

0 Ã(|Nh|)
2

o=N · n̂=N ·1 − Nh
|Nh|
2=curvature of the level set of h.

and Ã(|Nh|) is the same as (49). We still have

“th=v |Nh|, v=a2k(n̂)(cj−d). (64)

Remark 1. The derivation of (63) is done by considering the follow-
ing conservation law:

d
dt

F
Cj(t) 5 O

jj(s, t) ds=F
Cj(t) 5 O

1J+
j +J −

j −
v
a2
2 ds+De“sj(s1, t)−De“sj(s2, t)

where Cj(t) is the jth step parametrized by arclength s and O is some open
set intersecting Cj(t) at just two points s1 and s2. The left hand side of the
above equals

F
Cj(t) 5 O

(jt+vn̂ ·Nj+jov) ds

which gives (63). L

Remark 2. It is again convenient to rewrite (63) in terms of the
variable F=j |Nh|:

Ft+N · (Fvn̂)=F+N ·1 F
|Nh|

M(|Nh|) Nm2− 1
a2

ht (65)

where we have used the following identity

N · (Fvn̂)=n̂ ·N(Fv)+FvN · n̂. L
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5.1. Boundary Conditions at the Valleys and Peaks

As in the 1+1 dimensions, we need to impose appropriate boundary
conditions at the valleys and peaks. We consider a general surface
morphology such that the valleys are along curves and peaks are at isolated
points.

The boundary conditions at the valleys are quite similar to the 1+1
dimensional case. They include the conservation of adatoms, geometric
condition and the continuity of the chemical potential m across the valley.
If we denote the location of the valley at time t by X( · , t), then these
boundary conditions are expressed as follow:

1[F]Ẋ+5 F
|Nh|

M(|Nh|) Nm6−[Fvn̂]2 · n̂=0 (66)

[Nh] · Ẋ+[v |Nh|]=0 (67)

5 F
|Nh|
6=0 (68)

where [f]= the jump in the value of f across the valley.
At the peak, the situation is slightly different. As the singularities are

isolated points, the diffusion equation (65) can be solved everywhere in the
neighborhood of these points. No extra boundary conditions need to be
specified. This situation is similar to solving the Laplace equation in a
punctured disk: any L. solution can be extended to a solution on the
whole disk. Hence the velocities v of the steps (or equivalently the level sets
of h) near the peak are completely determined by just solving (65) alone.

The next step is to solve ht=v |Nh| with rarefaction initial data such as
h(0, (x, y))=− `x2+y2 . The geometric condition can be used to deter-
mine the horizontal velocity of the peak in the following way. Let X(t) be
the location of the peak and n̂h be the horizontal unit vector which makes
an angle h with some reference coordinate axis. The notation f(X ±

h ) refers
to the one-sided limiting value of f at X(t) taken along ±n̂h. By the con-
tinuity of the height profile, we have h(X −

h , t)=h(X+
h , t). Differentiating in

time gives

(Nh(X −
h ) · n̂h)(Ẋ · n̂h)+ht(X

−
h )=(Nh(X+

h ) · n̂h)(Ẋ · n̂h)+ht(X
+
h ).

Using the fact that ht(X
±
h )=v(X ±

h ) |Nh(X
±
h )|, we arrive at the following

identity which is true for all h:

Ẋ · n̂h=
v(X+

h ) |Nh(X
+
h ) |−v(X −

h )| Nh(X
−
h )|

Nh(X −
h ) · n̂h−Nh(X+

h ) · n̂h
(69)
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This then uniquely prescribes Ẋ. The vertical velocity still needs to be
determined, probably from the underlying nucleation process.

6. TE-MODEL WITH VAPOR PHASE DIFFUSION

In CVD growth, the adatoms are delivered to the interface through
diffusion in the reactor. In this section, we present the continuum limit
incorporating such a mechanism.

We first consider a one dimensional model. In order to describe the
interfacial profile, we will use z and x to denote the spatial variables in the
vertical and horizontal directions. As in the previous sections, we first
study the case of a sequence of vicinal terraces and steps located at
{z=zj}

.

j=−. and {x=xj}
.

j=−. so that zj−zj+1=a and the step profile is
monotonically decreasing (Fig. 6). In the present setting, we need to specify
the evolution of three types of mobile atoms— vapor, terrace and edge
adatoms. We will use C to denote the number density of the adatoms in the
vapor phase (with unit = length −3).

The diffusion of vapor adatoms can be described by the following
equation for C which holds in the region above the interface:

“C

“t
=DbgC=Db(“

2
xC+“

2
zC). (70)

The boundary conditions are

C(x,+., t)=F, −. < x <. (71)

Db
“C

“z
(x, zj, t)=sC(x, zj, t), xj < x < xj+1 (72)

Db
“C

“x
(xj, z, t)=lC(xj, z, t), zj < z < zj+1. (73)

Fig. 6. In models incorporating vapor phase diffusion, we consider the densities of the
mobile adatoms in the vapor phase (C), on the terrace (r) and at the step (j). The x and z
refer to the horizontal and vertical spatial variables.
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Here F is some uniform deposition flux at infinity; s and l are the
attachment rates of the vapor adatoms to the terraces and steps.

The terrace adatom density r solves an equation similar to (27):

0=D“2xr+Db
“C

“z
, z=zj, xj < x < xj+1 (74)

Drx |
+
j =a+r

+
j −b+jj=J+

j , x=x+j (75)

−Drx |
−
j =a−r

−
j −b−jj=J −

j , x=x −
j (76)

The rate of change of the edge adatom density j is given by

djj
dt

=J+
j +J −

j +Db F
zj+1

zj

“C

“x
(xj, z, t) dz−

vj
a2

. (77)

Note that we have allowed the possibility of the direct attachment of the
vapor adatoms to the edges. This process can be turned off by setting l=0
in (73).

Finally, we impose the same condition (11) for the step velocity:

vj=a2(cjj−d). (11)

The system of Eqs. (70)–(77) and (11) completely determines the
dynamics of the variables C, r, jj and vj. The continuum limit in this case
is a coupled system involving the diffusions of C and j and the growth of
the interfacial height h.

6.1. Continuum Limit of TE-Model with Vapor Diffusion

The solutions for (74)–(77) are very similar to those of (28)–(32). We
can perform the same limiting process as in the TE-Model and arrive at the
following continuum limit:4

4 We follow the same notation as in (33)–(37).

“C

“t
=DCgC=DC(“

2
xC+“

2
zC) for z > h(x, t), (78)

Db
“C

“n
=−(s cos h+l sin h)C, at z=h(x, t) (79)

C(x,+., t)=F, (80)
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Dj
Dt

=aDbC(x, h(x, t)) 1l+
s

|hx |
2+a“h(A(|hx |) “hj)

+1a+b− −a−b+
a+b−+a−b−

2 “h(A(|hx |) j)−
v
a2

(81)

v=a2k(cj−d), ht=v |hx |=a2k(cj−d) |hx | (82)

Here

n=
(hx, −1)

`1+h2x
=unit normal vector of the interface (83)

tanh=|hx |. (84)

Remark. The condition (79) is the effective boundary condition at
the continuum level. It is derived by taking the average of the oscillatory
boundary conditions (72) and (73). Such an averaging process is carried out
carefully in refs. 8 and 3. We will sketch it in A.3. L

7. CONCLUSION

In this paper, we have studied the continuum limit of step flow
models. Our limiting equations take the form of a coupled system of con-
vection-diffusion equation for the adatom density and a Hamilton–Jacobi
equation for the film height function. Novel free boundary conditions are
imposed at the peaks and valleys on the surface.

It is instructive to compare our results with the ones in the existing
literature. In refs. 1 and 20, the large scale meandering of the steps was
studied using long-wave expansion techniques. This pertains to the dyna-
mics of unstable perturbations in the weakly nonlinear regime. In principle,
the equations derived here should also be able to model this regime. In ref.
19, higher order equations are used to describe the profile of the film
between peaks and valleys. Phenomenological equations of the type intro-
duced in ref. 13 (see also ref. 27) concern with the spatial length scales
much larger than the typical mound size which is the scale considered here.

Further validations are needed to assess this approach, particularly on
the strategies to incorporate nucleation. This is the topic for a subsequent
paper. In the step flow regime, a parallel study has been carried out from a
more microscopic starting point (kinetic monte-carlo instead of BCF) (21)

Extension to include elastic effects is considered in ref. 28.
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A. APPENDIX

Here we include some derivations of the formulas and extensions of
the models we have considered.

A.1. Derivation of (28)–(31)

The formulas (28) and (29) are derived by solving for r in terms of j0
and j1 in the following cell problem:

Drxx=−F(x), x ¥ [0, l] (85)

J+
0 =Drx(0)=a+r(0)−b+j0 (86)

J −
1 =−Drx(l)=a−r(l)−b+j1 (87)

Here we consider a general F(x) rather than a constant deposition flux F.
From (85), we have

rx(x)=rx(0)−
1
D

F
x

0
F(s) ds

r(x)=r(0)+rx(0) x−
1
D

F
x

0
F
r

0
F(s) ds dr.

and hence

rx(l)=rx(0)−
1
D

F
l

0
F(s) ds

r(l)=r(0)+rx(0) l−
1
D

F
l

0
F
r

0
F(s) ds dr.

The boundary conditions (86) and (87) lead to

r(0)=
D > l0 F(s) ds+a− > l0 > r0 F(s) ds dr

(a++a− ) D+a+a− l
+

(D+a− l) b+j0+Db−j1
(a++a− ) D+a+a− l

r(l)=
D > l0 F(s) ds+a+ > l0 > lr F(s) ds dr

(a++a− ) D+a+a− l
+

(D+a+l) b−j1+Db+j0
(a++a− ) D+a+a− l
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If F(x) — F, the above formulas reduce to (28) and (29). Relations (86) and
(87) then give the expressions (30) and (31) for J+

0 and J −
1 .

A.2. TE-Model with Evaporation

To incorporate the evaporation of terrace adatoms, we change (27) to
the following form:

Drxx−
r

y
=−F (88)

J+
j =Drx |

+
j =a+(r

+
j −re)−b+(jj−je) (89)

J −
j =−(Drx |

−
j )=a− (r

−
j −re)−b− (jj−je) (90)

djj
dt

=j̇j=J+
j +J −

j −
vj
a2

(91)

vj=a2k(cjj−d) (92)

where y is the mean survival time for the terrace adatoms before they eva-
porate and re and je are the equilibrium terrace and edge adatom densi-
ties.

We can solve for r by considering a similar cell problem as in Section
A.1. By introducing the following notations:

lj=xj+1−xj

ej=e ljg, g=
1

`Dy

L(lj)=(D2g2+a+a− )(ej− e
−1
j )+Dg(a++a− )(ej+e

−1
j )

we can write down the following expression for the rate of change of the
edge adatom density:

djj
dt

+
vj
a2
=J+

j +J −
j =(I)+(II) (93)
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where

(I)=Contribution from F

=1Dg(ej− e
−1
j )+a− (ej+e

−1
j −2)

gL(lj)
2 a+1F−

re

y
2 (94)

+1Dg(ej−1− e
−1
j−1)+a+(ej−1+e

−1
j−1−2)

gL(lj−1)
2 a− 1F−

re

y
2 (95)

(II)=Contribution from j

=2gD 1a+b−+a−b+
2
21jj+1−jj

L(lj)
−
jj−jj−1
L(lj−1)
2 (96)

+2gD 1a+b− −a−b+
2
21jj+1+jj

L(lj)
−
jj+jj−1
L(lj−1)
2 (97)

−1a−b+(ej+e
−1
j −2)+Dgb+(ej− e

−1
j )

L(lj)
2 Dg(jj−je) (98)

−1a+b− (ej−1+e
−1
j−1−2)+Dgb− (ej−1− e

−1
j−1)

L(lj−1)
2 Dg(jj−je) (99)

It is clear that (94)–(97) resemble (32). The effect of evaporation is captured
by (98) and (99). As a check of the above formulas, note that in the limit of
no evaporation, i.e., as y0. (or g0 0), we have

ej− e −1=2ljg+O(l3jg
3) (100)

ej+e −1−2=l2jg
2+O(l4jg

4) (101)

L(lj)=2g{D(a++a− )+a+a− (lj+O(l2jg))} (102)

From these, it follows that (94)–(99) converge to (32) (if we set je to be
zero).

To obtain the continuum limit of this model, we keep g fixed and
consider the same scaling as in (38)– (46). Then we arrive at the following
equation.5

5 Here we follow the same notations as in (35) and (37). re and je are set to zero.
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Continuum Limit of TE-Model with Evaporation:

Dj
Dt

+
v
a2
=

aF
|hx |

+a“h(A(|hx |) “hj)+2 1a+b− −a−b+
a+b−+a−b−

2 “h(A(|hx |) j)

−1aDg
2

2
212(b++b− ) D|hx |+(a+b−+a−b+) a

D(a++a− ) |hx |+a+a− a
2 j
|hx |

(103)

Under our scaling, the deposition, diffusion and convective terms of (103)
have the order of O(a2b) j while the evaporation term is O(a2g2b) j. So as
g0 0 (in the limit of no evaporation), (103) converges to (33).

A.3. Derivation of (79)—Averaging of Oscillatory Boundary

Conditions

Here we briefly describe the derivation of (79) which is some kind of
averaging of the oscillatory boundary conditions (72) and (73). It is a
special case of the following result.

Let W e be a domain in R2 with an oscillatory boundary “W e which is
represented locally in graph by:

f0(x)+ef1 1x, t=
x
e
2 (104)

where f0 and f1 are Lipschitz functions and f1 is periodic in t with period
one. Let u e be the solution of the following problem:

u et=gu e, t > 0, x ¥ W e (105)

“u e

“n
+p(n̂ e) u e=0, t > 0, x ¥ “W e (106)

u e=u e0, t=0, x ¥ W e (107)

where n̂ e is the outward normal of “W e and p is positive and continuous.
Then u e will converge to u which is the solution of the following problem:

ut=gu, t > 0, x ¥ W (108)

“u
“n

+P(n̂)u=0, t > 0, x ¥ “W (109)

u=u0, t=0, x ¥ W (110)
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where W is the limit of W e and P is some function which can be computed
from p and f1 (114).

Remark. The above result is worked out in refs. 8 and 3. By making
use of H2 estimates, they can even obtain the rate of convergence in H1

norm. But here we will only consider H1 estimates and use the fact that if a
sequence un converges weakly to u in H1(W), then the trace of un converges
strongly in L2(“W) to the trace of u on “W. L

Sketch of Proof. For simplicity, we will assume that W … W e for all
e > 0.

Using the weak formulation of the solution to (105)–(107), u e satisfies
the following identity:

F
1

0
F
W
e
u ekt+F

W
e
u e0k=F

1

0
F
W
e
ONu e, NkP+F

1

0
F
“W
e
p(n̂ e) u ek (111)

for all k ¥ C.([0, 1]× W̄ e) such that k(1, · )=0. By the usual H1 energy
estimates, it is easy to extract a subsequence such that

u eE u weakly in H1(W)

u e0 u strongly in L2(“W)

(By the uniqueness of the solution of the limiting problem (108)–(110), the
convergence can be extended to the whole sequence.) Hence

F
1

0
F
W
e
u ekt 0 F

1

0
F
W

ukt

F
W
e
u e0k0 F

W

u0k

F
1

0
F
W
e
ONu e, NkP0 F

1

0
F
W

ONu, NkP

For the last term of (111), we proceed as

F
1

0
F
“W
e
p(n̂ e) u ek=F

1

0
F
“W
e
p(n̂ e)(u e−u) k+F

1

0
F
“W
e
p(n̂ e) uk (112)
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The first term on the right hand side tends to zero as u e converges strongly
to u in L2(“W). For the second term, it converges to

F
1

0
F
“W

P(n̂) uk (113)

where P(n̂) is derived in the following.
Suppose near x ¥ “W, “W e is represented as a graph

ef1 1x, t=
x
e
2

so that the normal n̂ of “W is along the y-axis. Since t=x
e is the fast vari-

able, P(n̂) can be given by the average of p(n̂ e) over the unit cell of
t ¥ [0, 1]:

P(n)=F
1

0
p(ft( · , t))`1+f2

t( · , t) dt. (114)

So u satisfies the following identity:

F
1

0
F
W

ukt+F
W

u0k=F
1

0
F
W

ONu, NkP+F
1

0
F
“W

P(n̂) uk

which is the weak formulation of the solution to (108)–(110). L

In order to apply the above result to the case of (72) and (73), we
consider the following piecewise linear function:

f1( · , t)=3
(tan h) t, t ¥ [0, cos2 h]

−(cot h)(t−1), t ¥ [cos2 h, 1]

p(n̂1)=s

p(n̂2)=l

where n̂1 and n̂2 are the normal vectors of f1 for t ¥ [0, cos2 h] and
[cos2 h, 1] respectively. Then

P(n̂)=F
cos2 h

0
s`1+tan2 h dt+F

1

cos2 h
l`1+cot2 h dt

=s cos h+l sin h

which is exactly (79).
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A.4. Multiple Species

In this section, we introduce a model of multiple species in which two
types of deposition adatoms (species A and B) land on the interface and
interact to form a third species C which is then incorporated into the
crystal. This is the simplest example of nontrivial chemistry.

We consider theTE-Modelwith vapor diffusion for the species A and B:

“CA

“t
=DA

bgC
A=DA

b (“
2
xC

A+“2zC
A)

“CB

“t
=DB

bgC
B=DB

b(“
2
xC

B+“2zC
B)

etc. (Note that the diffusion constants and attachment/detachment rates
might depend on the species A and B.) In the present case, jAj and jBj are
lost not to the film but to the formation of the new species C. So (77) and
(11) need to be modified as follows:

djSj
dt

=JS
j
++JS

j
−+DS

b F
zj+1

zj

“CS

“x
(xj, z, t) dz−

djCj
dt

, (S=A, B) (115)

djCj
dt

=LjAj j
B
j (116)

vj=a2k(cjCj −d) (117)

where jC is the edge adatom density of species C and L is the reaction rate.
Now the set of Eqs. (70)–(76) (one for each of A and B) and

(117)–(117) completely determines the evolution of the variables CA, B, rA, B,
jA, B, C and vj.

Remark. In the present model, we only consider the reactions at the
steps. Of course, we can easily modify the equations to allow reactions on
the terraces and even in the vapor state. L

A.4.1. Continuum Limit of TE-Model for Multiple Species

Following the same notations as in Section 6.1, we can write down the
continuum limit of the present model for multiple species.
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The adatom densities CA, CB solve the following equation (S=A or
B):

“CS

“t
=DS

bgC
S=DS

b(“
2
xC

S+“2zC
S) for z > h(x, t) (118)

with the boundary conditions

DS
b

“CS

“n
=−(sS cos h+lS sin h) CS at z=h(x, t) (119)

CS(x,+., t)=FS. (120)

Here n and h are defined in the same way as in (83) and (84).
The edge adatom densities (jA, jB) solve the following equation:

DjS

Dt
=aCS(x,h(x,t))1lS+ s

S

|hx |
2+a“h(AS(|hx |)“hjS)+QS

“h(A(|hx |)j)−
djC

dt
(121)

where

QS=
aS+b

S
−−a

S
−b

S
+

aS+b
S
−+a

S
−b

S
+

(122)

and AS(|hx |) has the same form as (36) but with the constants DS
r, a

S
± and

bS± which might depend on the species A or B.
The rate of change of jC is given by

djC

dt
=LjAjB. (123)

Finally, we have the similar conditions for the step velocity and the
interfacial growth:

v=a2k(cjC−d), ht=v |hx |. (124)

Remark. The derivation of the continuum limit is very similar to
that of the model with vapor diffusion (Section 6.1). Note that jAj , j

B
j can

be shown to converge strongly to jA, jB. Hence we can write down (123) at
the continuum level. L
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